196. Die Hydrolyse von 7-anti-substituierten p-Toluolsulfonsäure-[2-endound 2-exo-norbornyl]estern

Norbornanreihe, 12. Mitteilung

von Peter Flury und Cyril A. Grob*

Institut für Organische Chemie der Universität, St. Johanns-Ring 19, CH-4056 Basel

(14.VII.83)

The Hydrolysis of 7-anti-Substituted 2-endo- and 2-exo-Norbornyl p-Toluenesulfonates

Summary

The hydrolysis products of the title compounds have been determined. The preparation of the hitherto unknown solvolysis products is described.

In den vorangegangenen Mitteilungen [1a] [1b] wurde über den Mechanismus der Solvolyse der 7-anti-substituierten p-Toluolsulfonsäure-(-endo- und -2-exo-norbornyl)ester (Tosylate) 1a-g bzw. 2a-g berichtet. Unter den Reaktionsprodukten, welche in jener Arbeit aufgeführt wurden, befanden sich zahlreiche neue Norbornanderivate. Im folgenden wird die Herstellung der neuen Verbindungen für Vergleichszwecke, in erster Linie aber die Identifizierung und die Bildungsweise der Reaktionsprodukte der Tosylate 1a-g und 2a-g in 70 Vol-% Dioxan beschrieben.

Präparative Solvolysen. – Diese erfolgten in Gegenwart von 1,1 Äquiv. Et₃N. Die Produkte wurden durch quantitative Gaschromatographie und durch Vergleich der Retentionszeiten mit denjenigen authentischer Verbindungen bestimmt. Fehlten letztere, so wurden die ¹³C-NMR-Spektren der isolierten Produkte mit Literaturwerten oder mit den Daten geeigneter Modellverbindungen verglichen. Dies trifft besonders zu für die in *Tab. 1* aufgeführten 3- und 5-substituierten 2-exo-Norbornanole 5a-d bzw. 9 und 10, deren gefundene und berechnete chemische Verschiebungen gut übereinstimmen.

Tab. 2 enthält die prozentualen Anteile der Produkte der endo-Tosylate 1a-g und, in Klammern, der 2-exo-Tosylate 2a-g, welche zu mehr als 95% erfasst werden konnten. Beide Reihen 1 und 2 ergaben die gleiche Art von Produkten, allerdings in oft deutlich verschiedener Ausbeute. Hauptprodukte waren jeweils die 7-anti-substituierten 2-exo-Alkohole 3 a-g, die im Fall der endo-Tosylate 1 unter Inversion, im Falle der exo-Tosylate 2 unter Retention der Konfiguration an C(2) gebildet werden. Wie andernorts begründet wird [1a] [1b], spricht dieses Resultat für eine starke C(6), C(2)-

Verbrückung in den 2-Norbornylkationen 11 (Schema) aus den exo-Tosylaten 2, aber für wenig oder keine C(7), C(2)-Verbrückung in den Kationen aus den endo-Tosylaten 1. Die viel kleineren Mengen von 7-syn-substituierten 2-exo-Norbornanolen 4 müssen durch eine Hydridverschiebung von C(6) nach C(2), gemäss 11 → 15 (Schema), gebildet worden sein. Stärker vertreten sind die 3-endo-substituierten 2-exo-Norbornanole 5a-d, deren Bildung durch eine Wagner-Meerwein-Umlagerung über die Kationen 11 und 12 erklärt werden kann. Die Ausbeuten der Nortricyclane 6 sind überraschend hoch, zumal die 1,3-Eliminierung im Falle der entsprechenden 6-substituierten Norbornyltosylate weniger hervortritt [5].

Die Bildung geringer Mengen des Epoxids 7 bei der Hydrolyse der Tosylate 1 und 2, R = Cl bzw. Br, und das Fehlen der Alkohole 5e und 5f lässt schliessen, dass sich letztere unter den Reaktionsbedingungen (vgl. Tab.3 im Exper. Teil) cyclisieren. Die geringen Mengen des 7,2-Lactons 8, die bei der Solvolyse der Ester 1s und 2d sowie der Nitrile 1g und 2g entstehen, dürften durch Cyclisierung der entsprechenden Alkohole 4 oder der vorgelagerten Kationen 15 entstanden sein. Die Bildung geringer Mengen des 5-endo-Methyl-2-exo-norbornanols 9 aus 1a und 3a ($R = CH_3$) lässt sich durch die Hydridverschiebung $12 \rightarrow 13$ (Schema) erklären, während zur Bildung des 5-exo-Methyl-2-exo-norbornanols 10 eine zusätzlich Wagner-Meerwein-Umlagerung des Kations 13 zum Kation 14 angenommen werden muss.

		113111-Spekiren der Hydrotyseprodukte Sa-u, 7 und 10)						
		C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	C(7)
5a	gef.	45,6	82,8	46,9	41,0	21,0	25,1	36,5
	[2]	45,4	82,5	46,6	40,9	21,0	25,0	36,5
5b	gef.	44,9	78,2	51,5	37,9	21,7	24,9	36,1
	ber.b)	44,6	78,1	52,2	37,5	21,4	24,8	34,9
5c	gef.	45,4	80,3	55,5	39,5	21,0	25,0	36,0
	ber.c)	45,5	81,7	58,2	39,1	22,8	25,1	35,5
5d	gef.	44,8	76,1	57,9	39,7	23,8	24,4	36,4
	[4]	45,2	76,6	58,3	39,8	23,8	24,2	36,3
9	gef.	45,8	75,0	35,1	41,1	32,6	33,7	36,4
	[2]	45,5	74,6	34,8	40,7	32,4	33,3	36,2
10	gef.	45,2	74,5	36,4	39,2	44,8	32,5	35,6
	[2]	45,5	74,6	36,4	39,1	44,6	32,2	35,5

Tab. 1. Vergleich der gefundenen mit den berechneten bzw. beschriebenen chemischen Verschiebungen in den ¹³CNMR-Spektren der Hydrolyseprodukte **5a-d. 9** und **10**^a)

Tab. 2. Ausbeuten (in %) der Produkte der Reaktion von 7-anti-substituierten 2-endo- und (in Klammern) 2-exo-Norbornyl-tosylaten 1 bzw. 2 in 70 Vol-% Dioxan (Abweichungen vom Mittelwert ±2%)

Reaktant		Produkte					
1 bzw. 2					Übrige		
R	3	4	5	6			
a: CH ₃	51 (31)	2 (2)	42 (35)	2 (20)	9: 2 (4) 10: 1 (4)		
b: CH ₂ OAc	48 (67)	5 (6)	14 (18)	28 (9)	* * * * * * * * * * * * * * * * * * * *		
c: CH ₂ Br	69 (56)	6 (8)	9 (14)	15 (18)			
d: COOCH3	65 (60)	5 (8)	5 (10)	20 (14)	8 : 1 (1)		
e: Cl	80 (64)	8 (9)	` '	1 (20)	7: 7(2)		
f: Br	82 (64)	9 (9)		1 (3)	7: 3 (14)		
g: CN	71 (58)	2 (1)		23 (25)	8 : 3 (7)		

Synthesen von Vergleichssubstanzen. – Das bisher unbekannte, 7-anti-Acetoxymethyl-2-exo-norbornanol 3b wurde wie folgt hergestellt: Der bekannte Tetrahydropyranyläther 16a des 7-anti-Hydroxymethyl-2-endo-norbornanols 16b [1c] wurde acetyliert und dann einer sauren Methanolyse zum 2-endo-Alkohol 16c unterworfen. Nach Jones-Oxydation mit Chromsäure [6] wurde das gebildete Keton 17 mit NaBH₄ zu einem Gemisch des endo- und des exo-Alkohols 16c bzw. 3b im Verhältnis 4:1 reduziert. Der exo-Alkohol war mit dem entsprechenden Solvolyseprodukt 3b (Tab. 2) aufgrund des 'H-NMR-Spektrums') identisch.

^a) Chemische Verschiebungen in ppm bzgl. TMS (0 ppm).

b) Berechnet aufgrund der chemischen Verschiebung von 2-endo-Acetoxymethyl-norbornan 22 a; vgl. Exper.

Teil.

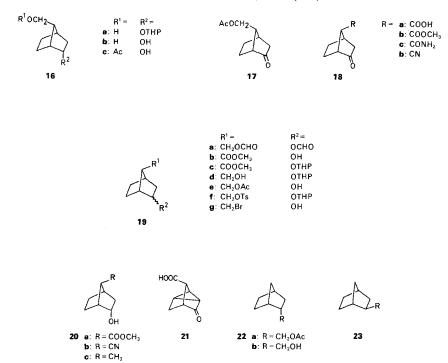
^c) Berechnet aufgrund des ¹³C-NMR-Spektrums von 6-endo-Brommethyl-2-exo-norbornanol (19).

Die Signale von H_{endo} -C(2) erscheinen jeweils bei ca. 0,5 ppm höherem Feld als die von H_{exo} -C(2).

		1 DZW. Z			
Reaktant	Temp. [°C]	Dauer [Std.]	Produkte		
1a	90	2,7	3a [lc]; 4a ^a); 5a ^b); 6a ^a); 9 ^b); 10 ^b)		
2 a	40	1,0			
1b	100	9,3	$3b^a); 4b^a); 5b^b); 6b^a)$		
2b	60	1,6			
1e	110	2,5	3c [lc]; 4c°); 5cb); 6ca)		
2e	75	0,6			
1d	110	13,5	$3d$ [1c]; $4d^c$); $5d^b$); $6d^a$); 8 [7a]		
2d	60	5,6			
1e	120	11,8	3e [1c]; 4e [15]; 6e [15]; 7 [16]		
2e	100	0,8			
1f	120	11,1	3f [lc]; 4f [17]; 6f [17]; 7 [16]		
2f	100	1,1			
1g 2g	120 110	43,3	3g [lc]; 4g ^a); 6g ^a); 8 [7a]		

Tab. 3. Temperatur, Dauer und Produkte der Reaktion von 7-anti-substituierten 2-endo- und 2-exo-Norbornylester

1 hzw. 2


Die Herstellung der 7-syn-R-2-exo-Norbornanole 4 erfolgte ausgehend von der in der Literatur mehrfach erwähnten 7-syn-Keto-carbonsäure 18a [7]. Besser als die beschriebenen Verfahren zur Synthese von 18a verlief die säurekatalysierte Umsetzung von Norbornen mit CH₂O in HCOOH zum Gemisch der epimeren Diameisensäureester 19a und deren Jones-Oxydation zur Säure 18a, welche mit Diazomethan in den Methylester 18b [5] übergeführt wurde. Reduktion von 18b mit NaBH₄ ergab ein Gemisch der Hydroxyester 19a, das chromatographisch in die epimeren 2-exo-bzw. 2-endo-Norbornanole 4d bzw. 20a aufgetrennt wurde¹). Verseifung des exo-Esters 4d ergab die bekannte Hydroxysäure 4h [7a], welche bei der Sublimation im Vakuum in das Lakton 8 [7a] überging.

Behandlung der Ketosäure 18a mit SOCl₂ und anschliessend mit NH₃ lieferte das Amid 18c, das mit TsCl in Pyridin zum Nitril 18d dehydratisiert wurde. Reduktion desselben mit NaBH₄ führte zum Gemisch der epimeren Alkohole 4g und 20b, welches chromatographisch getrennt wurde.

Das obige Gemisch der Hydroxyester 19b wurde mit Dihydropyran zum Äthergemisch 19c umgesetzt. Reduktion desselben mit LiAlH₄ führte zum Alkoholgemisch 19d, das einerseits durch Acetylierung und saure Methanolyse in das Alkoholgemisch 19e übergeführt wurde, anderseits mit TsCl und Pyridin das Tosylatgemisch 19f ergab. Die Umsetzung des letzteren mit LiBr und anschliessende saure Methanolyse ergab ein Gemisch der (Brommethyl)norbornanole 19g, welches durch Hydrierung über Pd/C die bekannten 7-syn-2-exo- und 7-syn-2-endo-Methylnorbornanole 4a bzw. 20c [9] lieferte. Zur Identifizierung des Solvolyseproduktes 4a war die Auftrennung des Gemisches nicht erforderlich.

^a) Durch Vergleich der Retentionszeit mit jener der authentischen Substanz (vgl. diese Arbeit).

⁾ Vgl. Tab. 1.

Die Nortricyclane 6 (Tab. 2) wurden aus der bekannten tricyclischen Ketosäure 21 [10] hergestellt. Reduktion nach Wolff-Kishner ergab daraus die ebenfalls bekannte Säure 6h [10], welche in den Methylester 6d übergeführt wurde. Durch Reduktion mit LiAlH₄ ging letzterer in den bekannten Alkohol 6i [11] über, der mit Acetanhydrid das Acetylderivat 6b, mit TsCl das Tosylat 6j lieferte. Letzteres ging mit LiBr in das Brommethyl-Derivat 6c über, dessen Hydrierung das bekannte 3-Methylnortricyclan (6a) [12] lieferte.

Die obige Säure 6h wurde auch über das Säurechlorid in das Amid 6k verwandelt, welches durch Wasserabspaltung mit TsCl zum bereits auf anderem Wege erhältlichen Nitril 6g [13] führte.

Zur Berechnung der chemischen Verschiebung im ¹³C-NMR-Spektrum des Solvolyseproduktes **5b** wurde das 2-endo-(Acetoxymethyl)norbornan **22a** [14] benötigt. Es wurde durch Acetylierung eines Gemisches der bekannten 2-Hydroxymethylnorbornane **22b** und **23b** [11] erhalten. Zur ¹³C-NMR-Analyse von **22a** war die Auftrennung des Gemisches nicht erforderlich.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die Unterstützung dieser Arbeit.

Experimenteller Teil

Allgemeine Bemerkungen: vgl. [1c].

Solvolysen. In der Regel wurden 5·10⁻² M Lösungen der Norbornylester 1a-g resp. 2a-g in 70proz. wässr. Dioxan und in Gegenwart von 1,1 Äquiv. Et₃N während 10 Halbwertszeiten umgesetzt. Die Reaktionstemperaturen und -zeiten sind in Tab.3 angegeben. Proben der Reaktionslösung wurden direkt in den Gaschromatographen eingespritzt. Qual. Analysen: Sigma 3-Gerät von Perkin-Elmer mit 25-m-Quarzkapillarkolonnen, Gemische aus 1a, d-g und 2a, d-g auf Carbowax 20 M, aus 1b, c und 2b, c auf SE 54. Quant. Analysen: Hewlett-Packard-5880A Gerät, Träger Chromosorb W80/100WA, 3% Carbowax. Beide GC-Geräte waren mit einem Integrator 5880A der Firma Hewlett-Packard gekoppelt. Die bei der Solvolyse von 1e-g und 2e-g entstandenen Produkte konnten zu ca. 95% identifiziert werden. Hingegen enthielten die Reaktionslösungen von 1a-d und 2a-d ca. 10-40% Produkte, welche durch GC-Untersuchung nicht identifiziert werden konnten, deren Retentionszeiten aber darauf hinwiesen, dass es sich um umgelagerte Alkohole handelt. In diesen Fällen wurde wie folgt verfahren: Die Solvolyselösungen wurden mit CH₂Cl₂ extrahiert, die Extrakte mit H₂O gewaschen, getrocknet (Na₂SO₄), i. RV. eingedampft und im Wasserstrahlvacuum destilliert. Die ¹³C-NMR der Destillate wurden entweder mit Literaturdaten oder mit den berechneten chemischen Verschiebungen verglichen (Tab. 1).

Essigsäure-(2-endo-hydroxy-9, 10-dinorborn-8-yl)ester (16c). Eine Lösung von 3,9 g (17,3 mmol) 16a in 2,0 g Ac₂O, 2 ml Pyridin und 20 ml CHCl₃ wurde 12 Std. bei RT. stehengelassen. Danach wurde die Lösung mit 2 N HCl und ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und am RV. eingedampft. Der Rückstand wurde in 30 ml MeOH gelöst, mit 200 mg TsOH versetzt und 10 Std. bei RT. stehengelassen. Dann wurde auf H_2O gegossen, mit CH_2Cl_2 extrahiert und die Extrakte mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und am RV. eingedampft. Destillation ergab 2,5 g (77%) 16c, Sdp. 115°/0,05 Torr. IR (Film): 3400 (OH), 1730 (C=O). ¹H-NMR (CDCl₃): 0,8–2,3 (m, Gerüst-H); 2,05 (s, 3 H, CH₃); 3,25 (m, 1 H); 4,05 (d, J = 8, 2 H, 2 H–C(8)); 4,15 (m, 1 H, H_{exo} -C(2)).

C₁₀H₁₆O₃ (184,237) Ber. C 65,19 H 8,75% Gef. C 64,64 H 9,05%

Essigsäure-[2-oxo-9, 10-dinorborn-8-y1]ester (17). Zu 1,0 g (5,4 mmol) 16c in 30 ml Et₂O wurde unter Rühren bei 5-10° Jones-Reagenz [6] bis zur konstanten Braunfärbung getropft und noch 2 Std. bei RT. weitergerührt. Die Et₂O-phase wurde mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und i. RV. eingedampft. Destillation ergab 0,85 g (86%) 17, Sdp. 155°/13 Torr. IR (Film): 1740 (C=O). ¹H-NMR (CDCl₃): 1,2-2,7 (m, Gerüst-H); 2,05 (s, 3 H, CH₃); 2,52 (br. s, 2 H); 3,07 (d, J = 8, 2 H, 2 H-C(8)).

C₁₀H₁₄O₃ (182,221) Ber. C 65,91 H 7,75% Gef. C 65,91 H 8,01%

Gemisch von 16c und Essigsäure-[2-exo-hydroxy-9, 10-dinorborn-8-yl]ester (3b). Zu einer Lösung von 500 mg (1,37 mmol) 17 in 5 ml 2-Propanol wurden 26 mg (0,69 mmol) NaBH₄ gegeben. Nach üblicher Aufarbeitung wurde der Rückstand destilliert: 450 mg (89%) 16c und 3b (4:1), Sdp. 115°/0,05 Torr. IR (Film): 3420 (OH), 1730 (C=O). 1 H-NMR (CDCl₃): 0,75-2,25 (m, Gerüst-H); 2,05 (s, 3 H, CH₃); 2,7 (br. s, 1 H); 3,7 (m, 0,2 H, H_{endo}-C(2)); 4,08 (, J = 7, 2 H, 2 H-C(8)); 4,2 (m, 0,8 H, H_{exo}-C(2)).

C₁₀H₁₆O₃ (184,237) Ber. C 65,19 H 8,75% Gef. C 64,83 H 9,05%

Diameisensäure-[8, 10-dinorborn-9, 2exo- und -9, 2endo-diyl]diester (19a). Zu einer Lösung von 37 g (1,28 mol) Paraformaldehyd, 450 ml HCOOH und 8 ml konz. H₂SO₄ wurden unter Rühren innert 1½ Std. 115 g (1,22 mol) 8,9, 10-Trinorbornen bei 30°–35° portionsweise gefügt. Nach 12 Std. Rühren bei RT. wurde auf Eiswasser gegossen und mit CH₂Cl₂ extrahiert. Die org. Phase wurde mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und am RV. eingedampft. Destillation ergab 174 g (72%) 19a, Sdp. 102°/0,05 Torr. IR (Film): 1730 (C=O); 1180 (C-O); ¹H-NMR (CDCl₃): 1,1–2,05 (*m*. Gerüst-H); 2,3 (br. *s*, 3 H); 3,8–4,45 (*m*, 2 H, 2 H–C(9)); 4,8 (*m*, 1 H, H–C(2)); 7,9 (*s*, 1 H, OCHO); 8,8 (*s*, 1 H, OCHO).

 $C_{10}H_{10}O_4$ (198,221) Ber. C 60,59 H 7,12% Gef. C 60,64 H 7,20%

2-Oxo-8, 9, 10-trinorbornan-7-syn-carbonsäure (18 a). Zu einer Lösung von 34,3 g (173 mmol) 19 a in 100 ml Aceton wurde bei 5-10° Jones-Reagens [6] bis zur konstanten Braunfärbung getropft. Danach wurde die Lösung 4 Std. bei RT. gerührt, mit Et₂O nach Kutscher-Steudel extrahiert, getrocknet (Na₂SO₄) und eingedampft. Aus Diisopropyläther 10,7 g (40%) 18 a, Smp. 122-123° ([7 a] 122-123°). IR (KBr): (ca. 3000 br. (OH), 1740 (C=O, COOH, 1680 (C=O). ¹H-NMR (CDCl₃): 1,1-2,4 (m, 6 H); 2,9 (m, 3 H); 10,8 (s, COOH).

 $C_8H_{10}O_3$ (154,167) Ber. C 62,32 H 6,54% Gef. C 62,11 H 6,57%

2-Oxo-8,9, 10-trinorbornan-7-syn-carbonsäure-methylester (18b). Eine Lösung von 1,54 g (10 mmol) 18a in 20 ml Et₂O wurde mit CH_2N_2 in Et₂O bis zur konstanten Gelbfärbung behandelt. Nach 20 Min. wurde i. RV. eingedampft: 100 % 18b, Sdp. 80°/0,02 Torr. IR (Film): 1740 und 1720 (C=O). ¹H-NMR (CDCl₃): 1,35-2,3 (m, 6 H); 2,3-2,9 (m, 3 H); 3,68 (s, 3 H, -CH₃).

C₉H₁₂O₃ (168,183) Ber. C 64,27 H 7,19% Gef. C 64,15 H 7,29%

2-endo- und 2-exo-Hydroxy-8,9,10-trinorbornan-7-syn-carbonsäure-methylester (20 a bzw. 4d). Zu einer Lösung von 1,1 g (6,49 mmol) 18b in 30 ml Et₂O wurden 0,123 g (3,3 mmol) NaBH₄ gegeben. Nach 12 Std. Rühren bei RT. wurde mit konz. HCl angesäuert und 15 Min. bei RT. gerührt. Die Et₂O-Lösung wurde getrocknet (Na₂SO₄) und eingedampft. Destillation lieferte 1,06 g (95%) 20 a/4d, Sdp. 110–112°/0,02 Torr. Chromatographie an Kieselgel mit Et₂O ergab 550 mg 20 a, gefolgt von einer Mischfraktion und von 150 mg reinem 4d.

20a: IR (Film): 3410 (OH), 1725 (C=O). ¹H-NMR (CDCl₃): 0,8–2,65 (m, Gerüst-H); 3,15 (br. s, 1 H, H_{anti}-C(7)); 3,63 (s, 3 H, CH₃); 4,4 (m, 1 H, H_{exo}-C(2)). ¹³C-NMR (CDCl₃): 20,2 (t, C(6)); 30,0 (t, C(5)); 37,5 (t, C(3)); 39, 7 (d, C(4)); 45,1 (d, C(1)); 51,4 (d, CH₃O); 54,6 (d, C(7)); 70,7 (d, C(2)); 173,7 (s, C=O).

4d: IR (Film): 3420 (OH), 1725 (C=O). ¹H-NMR (CDCl₃): 1,0-1,9 (*m*, Gerüst-H); 2,45 (br. *s*, 3 H); 3,63 (*s*, 3 H, CH₃); 3,63 (*m*, 1 H, H_{endo}-C(2)).

 $C_9H_{14}O_3$ (20 a/4d) (170,210) Ber. C 63,51 H 8,29% Gef. C 63,46 H 8,42%

8,9,10-Trinorbornan-7syn,2exo-carbolacton (= 8,10-Dinorbornano-9,2exo-lacton, 8). Eine Lösung von 100 mg (0,59 mmol) 4d in 0,5 ml MeOH und 0,5 ml $\rm H_2O$ wurde mit 100 mg (2,5 mmol) NaOH versetzt und 1 Std. unter Rückfluss erhitzt. Danach wurde mit 2n HCl angesäuert, mit Et₂O extrahiert, getrocknet (NaSO₄) und i.RV. eingedampft. Sublimation bei 160°/13 Torr ergab 70 mg (86%) 8, Smp. 119–121° ([7 a] 120–121°). IR (KBr): 1765 (C=O). 1 H-NMR (CDCl₃): 1,2–1,9 (m, 6 H, Gerüst-H); 2,53 (br. s, 2 H); 2,84 (br. s, 1 H); 4,55 (br. s, 1 H, 1 H_{endo}-C(2)).

2-Oxo-8, 9, 10-trinorbornan-7-syn-carboxamid (18c). Zu 1,0 g (6,5 mmol) 18a in 10 ml abs. CHCl₃ wurden unter Feuchtigkeitsausschluss 4 ml SOCl₂ gegeben. Nach 24 Std. bei RT. wurde i.RV. eingedampft, der Rückstand in 50 ml abs. Et₂O aufgenommen und trockenes NH₃ bis zur Sättigung eingeleitet. Dann wurde die Lösung mit H₂O gewaschen, getrocknet (Na₂SO₄) und eingedampft. Aus Aceton/AcOEt 820 mg (83%) 18c, Smp. 172–174°. IR (KBr): 3390 und 3170 (N-H), 1735 (C=O, Keton), 1670 (C=O, Amid). ¹H-NMR ((D₆)DMSO): 1,1–2,8 (m, Gerüst-H); 6,85 und 7,42 (br. s, 1 H, N-H).

C₈H₁₁NO₂ (153,167) Ber. C 62,72 H 7,24 N 9,14% Gef. C 62,76 H 7,44 N 9,08%

2-Oxo-8, 9, 10-trinorbornan-7-syn-carbonitril (18). Zu 1,5 g (9,8 mmol) 18 c in 6 ml abs. Pyridin wurden 2,5 g (12,5 mmol) TsCl gegeben und die Lösung 12 Std. bei RT. stehengelassen. Dann wurde 1 g Eis zugefügt, 20 Min. bei RT. gerührt, anschliessend mit 2 n HCl kongosauer gestellt und mit CH₂Cl₂ extrahiert. Die org. Phase wurde mit 2 n HCl und ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und eingedampft. Aus Et₂O Pentan 1,15 g (87%) 18d, Smp. 95–97°. IR (KBr): 2230 (CN), 1735 (C=O). H-NMR (CDCl₃): 1,5–2,5 (m, Gerüst-H); 2,75 (m, 1 H); 2,95 (m, 2 H).

C₈H₉NO (135, 167) Ber. C 71,09 H 6,71 N 10,36% Gef. C 71,15 H 6,91 N 10,35%

2-endo- und 2-exo-Hydroxy-8,9,10-trinorbornan-7-syn-carbonitril (20b bzw. 4g). Zu 900 mg (6,7 mmol) 18d in 30 ml Et₂O wurden 150 mg (4,02 mmol) NaBH₄ gegeben und 48 Std. bei RT. gerührt. Danach wurde die Lösung unter Eiskühlung mit 5 Tropfen HCl versetzt und 20 Min. gerührt, getrocknet (Na₂SO₄) und i.RV. eingedampft. Der Rückstand wurde an Kieselgel mit Et₂O chromatographiert. Zuerst wurden 400 mg (44%) 20b, gefolgt von 410 mg (45%) 4g eluiert.

20b: IR (Film): 3420 (OH), 2235 (CN). ¹H-NMR (CDCl₃): 0,9–2,4 (m, Gerüst-H); 2,5 (br. s, 3 H); 3,45 (br. s, 1 H); 4,55 (m, 1 H, H_{exo}-C(2)).

p-Toluolsulfonsäureester von 20b, viskoses Öl.

 $C_{15}H_{17}NO_3S$ (291,364) Ber. C 61,85 H 5,88 N 4,81% Gef. C 61,77 H 6,06 N 4,73%

4 g: IR (Film): 3420 (OH), 2235 (CN). ¹H-NMR (CDCl₃): 1,0–1,7 (m, Gerüst-H); 1,85 (m, 2 H); 2,28 (m, 2 H); 2,6 (br. s, 2 H); (t, J = 5, 1 H, H_{endo}-C(2)).

p-Toluolsulfonsäureester von 4g, aus AcOEt/Hexan, Smp. 109-111°.

C₁₅H₁₇NO₃S (291,364) Gef. C 61,85 H 5,88 N 4,81% Gef. C 61,64 H 5,83 N 4,73%

2-endo- und 2-exo-(3,4,5,6-Tetrahydro-2 H-pyran-2-yl)oxy-8,9,10-trinorbornan-7-syn-carbonsäure-methylester (19c). Eine Lösung von 1,8 g (10,6 mmol) 19b (exo/endo 1:4), 1,3 g (15,5 mmol) Dihydropyran und 50 mg TsOH in 30 ml abs. Et₂O wurde 12 Std. bei RT. stehengelassen. Dann wurde die Lösung mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und i. RV. eingedampft. Nach 12 Std. Trocknen i. HV. verblieben 2,64 g (98%) Isomerengemisch 19c als viskoses Öl. IR (Film): 1730 (C=O). ¹H-NMR (CDCl₃): 1,0-2,8 (m, Gerüst-H); 3,55 (s, 3 H, CH₃); 3,3-4 (m, 2 H, und 0,2 H, OCH₂ bzw. H_{endo}-C(2)); 4,5 (m, 1 H und 0,8 H, OCHO bzw H_{exo}-C(2)).

C₁₄H₂₂O₄ (254,325) Ber. C 66,11 H 8,72% Gef. C 65,85 H 8,94%

2-endo- und 2-exo-(3,4,5,6-Tetrahydro-2 H-pyran-2-yl)oxy-8, 10-dinorbornan-9-ol (19**d**). Ein Gemisch von 2,6 g (10,2 mmol) 19c und 0,78 g (18,3 mmol) LiAlH₄ in 40 ml abs. Et₂O wurde 6 Std. unter Rückfluss erhitzt. Danach wurde vorsichtig mit 4 ml 1 N NaOH versetzt und 4 Std. weitergerührt. Der entstandene körnige Niederschlag wurde abfiltriert, die Et₂O-Lösung getrocknet (Na₂SO₄) und i. RV. eingedampft. Nach 12 Std. Trocknen i. HV. verblieben 2,2 g (95%) 19d (1:4)-Gemisch von exo/endo-19d als viskoses Öl. IR (Film): 3370 (OH). ¹H-NMR (CDCl₃): 1,0-2,4 (m, Gerüst-H); 3,1-3,8 (m, 2 H und 0,2 H, OCH₂ bzw. H_{endo}-C(2)); 3,55 (d, d = 7, 2 H, 2 H-C(9)); 4,2 (m, 0,8 H, H_{exo}-C(2)); 4,5 (m, 1 H, OCHO).

C₁₃H₂₂O₃ (226,306) Ber. C 68,99 H 9,80% Gef. C 68,72 H 9,96%

Essigsäure-[2-endo- und 2-exo-hydroxy-8, 10-dinorborn-9-yl]ester (19 e). Eine Lösung von 1,0 g (4,4 mmol) 19 d, 0,5 g Ac_2O , 0,5 ml Pyridin in 3 ml CHCl₃ wurde 24 Std. bei RT. stehengelassen. Danach wurde auf Eiswasser gegossen und mit CHCl₃ extrahiert. Org. Phase mit 2n HCl und ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und eingedampft. Der Rückstand wurde in 10 ml MeOH gelöst, mit 50 mg TsOH versetzt und 3 Std. bei RT. stehengelassen. Danach wurde auf Eiswasser gegossen, mit CH₂Cl₂ extrahiert, Extrakte mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und i. RV. eingedampft. Destillation ergab 0,75 g (92%) (1:4)-Gemisch exo/endo-19 e, Sdp. 115°/0,05 Torr. IR (Film): 3420 (OH), 1730 (C=O). ¹H-NMR (CDCl₃): 0,8-2,4 (m, Gerüst-H); 2,1 (s, 3 H, CH₃); 3,8 (m, 0,2 H, H_{endo}-C(2)); 4,08 (d, d = 7, 2 H, 2 H-C(9)); 4,4 (m, 0,8 H, H_{exo}-C(2)).

C₁₀H₁₆O₃ (184,237) Ber. C 65,19 H 8,75% Gef. C 64,96 H 8,97%

p-Toluolsulfonsäure-[2-endo- und 2-exo-(3,4,5,-tetrahydro-2 H-pyran-2-yl)oxy-8, 10-dinorborn-9-yl]ester (19f). Das Gemisch 19d wurde auf übliche Weise tosyliert. Chromatographie an Al_2O_3 (neutral) mit CH_2Cl_2 ergab ein (1:4)-Gemisch von exo/endo-19f als viskoses Öl. IR (Film): 1600 (Aromat). ¹H-NMR (CDCl₃): 0,9-2,5 (m, Gerüst-H); 2,4 (s, 3 H, $CH_3C_6H_4$); 3,3-4,5 (m, 4 H); 4,0 (d, J=7, 2 H, 2 H-C(9)); 7,3 und 7,8 (AA', BB'-System, J=8, je 2 H, $CH_3C_6H_4$).

C₂₀H₂₈SO₅ (380,442) Ber. C 63,14 H 7,42% Gef. C 63,09 H 7,69%

C₈H₁₃BrO (205,094) Ber. C 46,84 H 6,38% Gef. C 46,93 H 6,55%

8, 10-Dinorbornan-2-endo- und 2-exo-ol (20c bzw. 4a). Eine Lösung von 1,4 g (6,8 mmol) 19g in 40 ml MeOH wurde mit 2 g Et₃N und 1 g 10proz. Pd/C versetzt und 12 Std. unter Normaldruck hydriert. Dann wurde über Celite filtriert und i. RV. eingedampft. Der Rückstand wurde in 50 ml Et₂O aufgenommen, mit 2n HCl und ges. NaHCO₃-Lösung gewaschen, getrocknet und i. RV. eingedampft. Nach der Destillation verblieben 0,75 g (87%) (15:85)-Gemisch 4a/20c, Sdp. 125°/13 Torr. IR (Film): 3330 (OH). 1 H-NMR (CDCl₃): 0,7-2,4 (m, Gerüst-H); 0,95 (d, J = 7, 3 H, CH₃); 4,45 (m, 0,85 H, H_{exo}-C(2)); 3,45 (m, 0,15 H, H_{endo}-C(2)).

C₈H₁₄O (126,198) Ber. C 76,14 H 11,18% Gef. C 75,96 H 11,13%

Tricyclo[2.2.1.0^{2.6}]heptan-3-carbonsäure (= Nortricyclan-3-carbonsäure; **6h**). In Anlehnung an [17] wurde 1,0 g (6,58 mmol) **21** [7] mit 2 ml 80proz. Hydrazinhydrat 2 Std. auf 100-110° erhitzt. Danach wurde mit 1,2 g KOH und 6 ml Triäthylenglycol versetzt gegeben und die Temp. allmählich auf 220° erhöht. Nach 2 Std. wurde abgekühlt, mit H₂O verdünnt und mit CH₂Cl₂ extrahiert. Die org. Phase wurde mit H₂O gewaschen, getrocknet (Na₂SO₄) und eingedampft. Aus Pentan 800 mg (88%), Smp. 47-49° ([11]: 42-46°). IR (KBr): ca. 3000 br. (OH), 1690 (C=O). ¹H-NMR (CDCl₃): 1,1-1,7 (m, Gerüst-H); 2,24 (s, 1 H); 2,43 (s, 1 H); 11,3 (s, 1 H, COOH).

Tricyclo[2.2.1.0^{2.6}]heptan-3-carbonsäure-methylester (6d). Eine Lösung von 2,5 g (18,1 mmol) 6h in 10 ml Et₂O wurde unter Rühren mit ätherischer Diazomethanlösung bis zur bleibenden Gelbfärbung behandelt. Nach 20 Min. wurde i. RV. eingedampft. Destillation ergab 2,70 g (98%) 6d, Sdp. 105–108°/14 Torr ([19]: 62–63°/0,05 Torr). IR (Film): 3060 (Cyclopropanring), 1730 (C=O). ¹H-NMR (CDCl₃): 1,05–1,55 (m, Gerüst-H); 2,20 (s, 1 H); 2,36 (s, 1 H); 3,65 (s, 3 H, CH₃O).

C₉H₁₂O₂ (152,195) Ber. C 71,02 H 7,95% Gef. C 70,86 H 7,97%

Tricyclo[2.2.1.0^{2.6}]heptan-3-methanol (6i). Die Lösung von 5,5 g (36,2 mmol) 6d in 50 ml abs. Et₂O wurde unter Rühren bei $10-15^{\circ}$ portionsweise mit 2,7 g (70,74 mmol) LiAlH₄ versetzt. Nach weiteren 3 Std. Rühren bei RT. wurden unter Eiskühlung 10 ml 1 N NaOH langsam zugetropft. Es wurde nochmals 3 Std. gerührt, der entstandene körnige Niederschlag abfiltriert, die Et₂O-Lösung getrocknet (Na₂SO₄) und i.RV. eingedampft. Destillation ergab 4,25 g (95%) 6i, als Öl, vom Sdp. $128^{\circ}/14$ Torr ([11]: $72-74^{\circ}/2$,5 Torr). IR (Film): 3320 (OH), 3060 (Cyclopropanring). ¹H-NMR (CDCl₃): 0,8–1,8 (m); 1,85 (s, 1 H); 2,5 (s, 1 H); 3,4 (d, d = 7, 2 H, CH₂-C(3)). ¹³C-NMR (CDCl₃): 9,6 (d, C(6)); 11,2 (d, C(2)); 29,0 (t, C(7)); 31,0 (d, C(4)); 34,2 (t, C(5)); 47,9 (d, C(3)); 62,5 (t, C(5)).

C₈H₁₂O (124,184) Ber. C 77,37 H 9,74% Gef. C 77,21 H 10,01%

Essigsäure-[tricyclo[2.2.1.0^{2,6}]heptan-3-methyl]ester (**6b**). Eine Lösung von 500 mg (4,03 mmol) **6i**, 1,64 g (16,1 mmol) Ac₂O und 0,5 ml Pyridin in 2 ml abs. CHCl₃ wurde bei RT. über Nacht stehengelassen. Danach wurde auf Eiswasser gegossen, mit 2 n HCl kongosauer gestellt und mit CHCl₃ extrahiert. Die org. Phase wurde mit 2 n HCl und mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und i. RV. eingedampft. Destillation ergab 640 mg (96%) **6b**, Sdp. 119–124°/14 Torr. IR (Film): 3060 (Cyclopropanring), 1735 (C=O). ¹H-NMR (CDCl₃): 0,8–2,2 (m, 9 H); 2,01 (s, 3 H, CH₃); 3,9 (d, J = 7, 2 H, CH₂-C(3)).

C₁₀H₁₄O₂ (166,222) Ber. C 72,26 H 8,49% Gef. C 72,29 H 8,68%

p-Toluolsulfonsäure-[tricyclo[2.2.1.0^{2.6}]heptan-3-methyl]ester (6j). Auf übliche Weise wurden 5 g (40,3 mmol) 6i tosyliert. Destillation ergab 10,2 g (91%) 6j als Öl, Sdp. 135°/0,02 Torr. IR (Film): 3060 (Cyclopropan), 1600 (Aromat). 1 H-NMR (CDCl₃): 0,8–2,2 (m, 9 H); 2,45 (s, 3 H, CH₃C₆H₄); 3,8 (m, 2 H, CH₂-C(3)); 7,3 und 7,8 (AA', BB'-System, J = 8, je 2 H, CH₃C₆H₄).

C₁₅H₁₈SO₃ (266,297) Ber. C 64,73 H 6,52% Gef. C 64,88 H 6,59%

3-(Brommethyl) tricyclo[2.2.1.0^{2.6}]heptan (6c). Eine Lösung von 7,0 g (25,2 mmol) 6j und 8,76 g (100,8 mmol) LiBr in 80 ml abs. Aceton wurde 12 Std. unter Rückfluss erhitzt. Dann wurde auf Eiswasser gegossen und mit CH₂Cl₂ extrahiert. Die Extrakte wurden mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und i. RV. eingedampft. Destillation ergab 3,53 g (75%) 6c als Öl, Sdp. 148–150°/13 Torr. IR (Film): 3060 (Cyclopropanring). ¹H-NMR (CDCl₃): 0,8–2,1 (m, 9 H); 3,25 (m, 2 H, CH₂Br). ¹³C-NMR. (CDCl₃): 9,7 (d, C(6)); 12,5 (d, C(1)); 15,1 (d, C(2)); 28,8 (t, C(5)); 33,7 (t, CH₂Br); 33,3 (d, C(4)); 34,2 (t, C(7)); 48,2 (d, C(3)).

3-Methyltricyclo[2.2.1.0^{2.6}]heptan (6a). Eine Lösung von 1,0 g (5,3 mmol) 6c in 30 ml MeOH wurde mit 1,5 g Et₃N und 0,5 g 10proz. Pd/C versetzt und 12 Std. unter Normaldruck hydriert. Dann wurde über *Celite* filtriert und fraktioniert destilliert. 350 mg (61%) 6a, Sdp. 95°/760 Torr. Die äusserst flüchtige Verbindung wurde spektroskopisch identifiziert. IR (Film): 3060 (Cyclopropanring), 2950, 2880, 1455, 1375, in Übereinstimmung mit [9a]. ¹³C-NMR (CDCl₃): 9,4 (C(6)); 11,9 (C(1)); 14,5 (C(2)); 16,5 (CH₃); 28,8 (C(4)); 34,5 (C(5)); 35,0 (C(7)); 39,2 (C(3)).

Tricyclo[2.2.1.0^{2.6}]heptan-3-carboxamid (6k). Zu 1,0 g (7,25 mmol) 6h in 10 ml abs. CHCl₃ wurden unter Feuchtigkeitsausschluss 3 ml SOCl₂ getropft. Die Lösung wurde 48 Std. bei RT. stehengelassen und dann i. RV. eingedampft. Der Rückstand wurde in abs. Et₂O aufgenommen und mit trockenem NH₃ versetzt. Danach wurde die org. Phase mit ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und eingedampft. Aus AcOEt/

Hexan 900 mg (91%) **6k**, Smp. 192–193°. IR (KBr): 3340 und 3170 (NH), 3060 (Cyclopropanring), 1650 und 1620 (C=O). ¹H-NMR (CDCl₃): 1,1–1,5 (m, 7 H); 2,18 (br. s, 1 H); 2,3 (br. s, 1 H); 5,0–6,3 (2 H, NH₂).

C₈H₁₁NO (137,183) Ber. C 70,04 H 8,08 N 10,21% Gef. C 69,78 H 8,16 N 10,20%

Tricyclo[2.2.1.0^{2,6}]heptan-3-carbonitril (**6g**). Eine Lösung von 280 mg (2,04 mmol) **6k** und 550 mg TsCl in 3 ml Pyridin wurde 24 Std. bei RT. stehengelassen, dann mit *ca.* 1 g Eis versetzt und 20 Min. gerührt und mit CH₂Cl₂ extrahiert. Die org. Phase wurde mit 2N HCl und ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und eingedampft. Nach der Destillation im Kugelrohr verbleiben 160 mg (66%) des flüchtigen Nitrils **6g**, Sdp. 80–90°/13 Torr. IR (Film): 3060 (Cyclopropanring), 2240 (CN). ¹H-NMR (CDCl₃): 1,2–1,9 (*m*, 7 H); 2,35 (*m*, 2 H). ¹³C-NMR (CDCl₃): 9,8 (*d*, (C(6)); 10,9 (*d*, (C(1)); 14,5 (*d*, (C(2)); 31,3 (*t*, (C(5)); 33,1 (*t*, (C(7)); 34,0, 34,3 (2*d*, C(4) und C(3)); 120,8 (*s*, C(8)).

Essigsäure-[8, 9, 10-trinarbornan-2-endo- und -2-exomethyl]ester (22 a bzw. 23 a). Eine Lösung von 1,4 g (11,1 mmol) 22 b/23 b, 2 g Ac₂O und 2 ml Pyridin in 20 ml abs. CHCl₃ wurde 48 Std. bei RT. stehengelassen. Danach wurde die Lösung mit 2 n HCl und ges. NaHCO₃-Lösung gewaschen, getrocknet (Na₂SO₄) und i. RV. eingedampft. Nach der Destillation verblieben 1,7 g (91%) 22 a/23 a (7:3), Sdp. 125°/12 Torr. IR (Film): 1740 (C=O). ¹H-NMR (CDCl₃): 0,5–1,8 (m, Gerüst-H); 2,03 (s, 3 H, CH₃); 2,2 (m, 2 H); 3,9 (m, 2 H, CH₂O), in Übereinstimmung mit [14]. ¹³C-NMR von 22 a (CDCl₃): 20,8 (q, CH₃); 22,7 (t, C(6)); 30,0 (t, C(5)); 33,8 (t, C(3)); 36,9 (d, C(4)); 38,5 (d, C(1)); 39,0 (t, C(7)); 39,9 (t, C(2)); 66,5 (t, CH₂O-); 170,8 (s, C=O). ¹³C-NMR von 23 a (CDCl₃): 20,8 (q, CH₃); 28,9 (t, C(6)); 29,98 (t, C(5)); 34,2 (t, C(3)); 35,3 (d, C(4)); 36,3 (d, C(1)); 41,2 (d, C(2)); 38,7 (t, C(7)); 67,9 (t, -CH₂O-); 170,8 (s, C=O).

C₁₀H₁₆O₂ (168,238) Ber. C 71,39 H 9,59% Gef. C 71,36 H 9,78%

LITERATURVERZEICHNIS

- a) P. Flury & C. A. Grob, Helv. Chim. Acta 66, 1971 (1983);
 b) P. Flury & C. A. Grob, Tetrahedron Lett. eingereicht;
 c) P. Flury & C. A. Grob, Helv. Chim. Acta 66, 1991 (1983).
- [2] J.B. Stothers, C.T. Tan & K.C. Teo, Can. J. Chem. 54, 1211 (1976).
- [3] W. Fischer, C.A. Grob, G.v. Sprecher & A. Waldner, Helv. Chim. Acta 63, 928 (1980).
- [4] G.C. Levy & G.L. Nelson, 'Carbon-13 Nuclear Magnetic Resonance for Organic Chemists', Wiley-Interscience, 1972.
- [5] a) W. Fischer, C.A. Grob, R. Hanreich, G.v. Sprecher & A. Waldner, Helv. Chim. Acta 64, 2298 (1981); b) C.A. Grob, B. Günther & R. Hanreich, Helv. Chim. Acta 64, 2312 (1981); c) C.A. Grob & D. Herzfeld, Helv. Chim. Acta 65, 2443 (1982).
- [6] L.F. Fieser & M. Fieser, 'Reagents for Organic Syntheses', Vol. 1, Wiley, New York, 1967, S. 142.
- [7] a) S. Beckmann & H. Geiger, Chem. Ber. 94, 48 (1961); b) A. Nickon, H. R. Kwasnik, C. T. Mathew, T. D. Swartz, R. O. Williams & J. B. DiGiorgio, J. Org. Chem. 43, 3904 (1978).
- [8] M. Nakazaki, K. Naemura & H. Kadowaki, J. Org. Chem. 41, 3725 (1976).
- [9] a) J.A. Berson, A.W. McRowe, R.G. Bergman & D. Houston, J. Am. Chem. Soc. 89, 2563 (1967);
 b) W. Kirmse, M. Hartmann, R. Siegfried, H.J. Wroblowsky, B. Zang & V. Zellmer, Chem. Ber. 114, 1793 (1981).
- [10] N. R. Beeley, R. Peel & J. K. Sutherland, Tetrahedron 37, Suppl. 1, 411 (1981).
- [11] P.G. Gassman & J.A. Nikora, J. Organomet. Chem. 92, 81 (1975).
- [12] J.A. Berson & R.G. Bergman, J. Am. Chem. Soc. 89, 2569 (1967).
- [13] M. Lajunen & T. Sura, Finn. Chem. Lett. 1979, 233.
- [14] R.G. Foster & M.C. McIvor, J. Chem. Soc., Chem. Commun. 1967, 280.
- [15] J.D. Roberts, F.O. Johnson & R.A. Carboni, J. Am. Chem. Soc. 76, 5692 (1954).
- [16] H. Kwart & W. G. Vosburgh, J. Am. Chem. Soc. 76, 5400 (1954).
- [17] L.H. Zalkow & A.C. Oehlschlager, J. Org. Chem. 29, 1625 (1964).
- [18] M.D. Soffer, M.B. Soffer & K.W. Sherk, J. Am. Chem. Soc. 67, 1435 (1945).
- [19] S. Torii, H. Tanaka & T. Mandai, J. Org. Chem. 40, 2221 (1975).